Package: MSiP 1.3.7
MSiP: 'MassSpectrometry' Interaction Prediction
The 'MSiP' is a computational approach to predict protein-protein interactions from large-scale affinity purification mass 'spectrometry' (AP-MS) data. This approach includes both spoke and matrix models for interpreting AP-MS data in a network context. The "spoke" model considers only bait-prey interactions, whereas the "matrix" model assumes that each of the identified proteins (baits and prey) in a given AP-MS experiment interacts with each of the others. The spoke model has a high false-negative rate, whereas the matrix model has a high false-positive rate. Although, both statistical models have merits, a combination of both models has shown to increase the performance of machine learning classifiers in terms of their capabilities in discrimination between true and false positive interactions.
Authors:
MSiP_1.3.7.tar.gz
MSiP_1.3.7.zip(r-4.5)MSiP_1.3.7.zip(r-4.4)MSiP_1.3.7.zip(r-4.3)
MSiP_1.3.7.tgz(r-4.4-any)MSiP_1.3.7.tgz(r-4.3-any)
MSiP_1.3.7.tar.gz(r-4.5-noble)MSiP_1.3.7.tar.gz(r-4.4-noble)
MSiP_1.3.7.tgz(r-4.4-emscripten)MSiP_1.3.7.tgz(r-4.3-emscripten)
MSiP.pdf |MSiP.html✨
MSiP/json (API)
# Install 'MSiP' in R: |
install.packages('MSiP', repos = c('https://mrbakhsh.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mrbakhsh/msip/issues
- SampleDatInput - Test data for scoring
- testdfClassifier - Test data for classifier
Last updated 3 years agofrom:17fea87732. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | NOTE | Nov 04 2024 |
R-4.5-linux | NOTE | Nov 04 2024 |
R-4.4-win | NOTE | Nov 04 2024 |
R-4.4-mac | NOTE | Nov 04 2024 |
R-4.3-win | NOTE | Nov 04 2024 |
R-4.3-mac | NOTE | Nov 04 2024 |
Exports:cPASSdiceCoefficientjaccardCoefficientoverlapScorerfTrainsimpsonCoefficientsvmTrainWeighted.matrixModel
Dependencies:backportsbitbit64bootbroomcaretclassclicliprclockcodetoolscolorspacecpp11crayondata.tablediagramdigestdplyre1071fansifarverforcatsforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablehardhathavenhmsipredisobanditeratorsjomoKernSmoothlabelinglatticelavalifecyclelistenvlme4lubridatemagrittrMASSMatrixmgcvmiceminqamitmlModelMetricsmunsellnlmenloptrnnetnumDerivordinalpanparallellypillarpkgconfigplyrprettyunitspROCprodlimprogressprogressrproxyPRROCpurrrR6rangerRColorBrewerRcppRcppEigenreadrrecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbucminfutf8vctrsviridisLitevroomwithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
cPASS | cPASS |
diceCoefficient | diceCoefficient |
jaccardCoefficient | jaccardCoefficient |
overlapScore | overlapScore |
rfTrain | rfTrain |
Test data for scoring | SampleDatInput |
simpsonCoefficient | simpsonCoefficient |
svmTrain | svmTrain |
Test data for classifier | testdfClassifier |
Weighted.matrixModel | Weighted.matrixModel |